3.3.13 \(\int \frac {1}{x^4 \sqrt {c+d x^3} (4 c+d x^3)} \, dx\)

Optimal. Leaf size=88 \[ \frac {d \tan ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {3} \sqrt {c}}\right )}{24 \sqrt {3} c^{5/2}}+\frac {d \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{8 c^{5/2}}-\frac {\sqrt {c+d x^3}}{12 c^2 x^3} \]

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 88, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {446, 103, 156, 63, 208, 203} \begin {gather*} -\frac {\sqrt {c+d x^3}}{12 c^2 x^3}+\frac {d \tan ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {3} \sqrt {c}}\right )}{24 \sqrt {3} c^{5/2}}+\frac {d \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{8 c^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^4*Sqrt[c + d*x^3]*(4*c + d*x^3)),x]

[Out]

-Sqrt[c + d*x^3]/(12*c^2*x^3) + (d*ArcTan[Sqrt[c + d*x^3]/(Sqrt[3]*Sqrt[c])])/(24*Sqrt[3]*c^(5/2)) + (d*ArcTan
h[Sqrt[c + d*x^3]/Sqrt[c]])/(8*c^(5/2))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x^4 \sqrt {c+d x^3} \left (4 c+d x^3\right )} \, dx &=\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{x^2 \sqrt {c+d x} (4 c+d x)} \, dx,x,x^3\right )\\ &=-\frac {\sqrt {c+d x^3}}{12 c^2 x^3}-\frac {\operatorname {Subst}\left (\int \frac {3 c d+\frac {d^2 x}{2}}{x \sqrt {c+d x} (4 c+d x)} \, dx,x,x^3\right )}{12 c^2}\\ &=-\frac {\sqrt {c+d x^3}}{12 c^2 x^3}-\frac {d \operatorname {Subst}\left (\int \frac {1}{x \sqrt {c+d x}} \, dx,x,x^3\right )}{16 c^2}+\frac {d^2 \operatorname {Subst}\left (\int \frac {1}{\sqrt {c+d x} (4 c+d x)} \, dx,x,x^3\right )}{48 c^2}\\ &=-\frac {\sqrt {c+d x^3}}{12 c^2 x^3}-\frac {\operatorname {Subst}\left (\int \frac {1}{-\frac {c}{d}+\frac {x^2}{d}} \, dx,x,\sqrt {c+d x^3}\right )}{8 c^2}+\frac {d \operatorname {Subst}\left (\int \frac {1}{3 c+x^2} \, dx,x,\sqrt {c+d x^3}\right )}{24 c^2}\\ &=-\frac {\sqrt {c+d x^3}}{12 c^2 x^3}+\frac {d \tan ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {3} \sqrt {c}}\right )}{24 \sqrt {3} c^{5/2}}+\frac {d \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{8 c^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 88, normalized size = 1.00 \begin {gather*} \frac {d \tan ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {3} \sqrt {c}}\right )}{24 \sqrt {3} c^{5/2}}+\frac {d \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{8 c^{5/2}}-\frac {\sqrt {c+d x^3}}{12 c^2 x^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^4*Sqrt[c + d*x^3]*(4*c + d*x^3)),x]

[Out]

-1/12*Sqrt[c + d*x^3]/(c^2*x^3) + (d*ArcTan[Sqrt[c + d*x^3]/(Sqrt[3]*Sqrt[c])])/(24*Sqrt[3]*c^(5/2)) + (d*ArcT
anh[Sqrt[c + d*x^3]/Sqrt[c]])/(8*c^(5/2))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.09, size = 88, normalized size = 1.00 \begin {gather*} \frac {d \tan ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {3} \sqrt {c}}\right )}{24 \sqrt {3} c^{5/2}}+\frac {d \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{8 c^{5/2}}-\frac {\sqrt {c+d x^3}}{12 c^2 x^3} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(x^4*Sqrt[c + d*x^3]*(4*c + d*x^3)),x]

[Out]

-1/12*Sqrt[c + d*x^3]/(c^2*x^3) + (d*ArcTan[Sqrt[c + d*x^3]/(Sqrt[3]*Sqrt[c])])/(24*Sqrt[3]*c^(5/2)) + (d*ArcT
anh[Sqrt[c + d*x^3]/Sqrt[c]])/(8*c^(5/2))

________________________________________________________________________________________

fricas [A]  time = 0.65, size = 194, normalized size = 2.20 \begin {gather*} \left [\frac {2 \, \sqrt {3} \sqrt {c} d x^{3} \arctan \left (\frac {\sqrt {3} \sqrt {d x^{3} + c}}{3 \, \sqrt {c}}\right ) + 9 \, \sqrt {c} d x^{3} \log \left (\frac {d x^{3} + 2 \, \sqrt {d x^{3} + c} \sqrt {c} + 2 \, c}{x^{3}}\right ) - 12 \, \sqrt {d x^{3} + c} c}{144 \, c^{3} x^{3}}, -\frac {\sqrt {3} \sqrt {-c} d x^{3} \log \left (\frac {d x^{3} - 2 \, \sqrt {3} \sqrt {d x^{3} + c} \sqrt {-c} - 2 \, c}{d x^{3} + 4 \, c}\right ) + 18 \, \sqrt {-c} d x^{3} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-c}}{c}\right ) + 12 \, \sqrt {d x^{3} + c} c}{144 \, c^{3} x^{3}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(d*x^3+4*c)/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

[1/144*(2*sqrt(3)*sqrt(c)*d*x^3*arctan(1/3*sqrt(3)*sqrt(d*x^3 + c)/sqrt(c)) + 9*sqrt(c)*d*x^3*log((d*x^3 + 2*s
qrt(d*x^3 + c)*sqrt(c) + 2*c)/x^3) - 12*sqrt(d*x^3 + c)*c)/(c^3*x^3), -1/144*(sqrt(3)*sqrt(-c)*d*x^3*log((d*x^
3 - 2*sqrt(3)*sqrt(d*x^3 + c)*sqrt(-c) - 2*c)/(d*x^3 + 4*c)) + 18*sqrt(-c)*d*x^3*arctan(sqrt(d*x^3 + c)*sqrt(-
c)/c) + 12*sqrt(d*x^3 + c)*c)/(c^3*x^3)]

________________________________________________________________________________________

giac [A]  time = 0.16, size = 72, normalized size = 0.82 \begin {gather*} \frac {\sqrt {3} d \arctan \left (\frac {\sqrt {3} \sqrt {d x^{3} + c}}{3 \, \sqrt {c}}\right )}{72 \, c^{\frac {5}{2}}} - \frac {d \arctan \left (\frac {\sqrt {d x^{3} + c}}{\sqrt {-c}}\right )}{8 \, \sqrt {-c} c^{2}} - \frac {\sqrt {d x^{3} + c}}{12 \, c^{2} x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(d*x^3+4*c)/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

1/72*sqrt(3)*d*arctan(1/3*sqrt(3)*sqrt(d*x^3 + c)/sqrt(c))/c^(5/2) - 1/8*d*arctan(sqrt(d*x^3 + c)/sqrt(-c))/(s
qrt(-c)*c^2) - 1/12*sqrt(d*x^3 + c)/(c^2*x^3)

________________________________________________________________________________________

maple [C]  time = 0.23, size = 477, normalized size = 5.42 \begin {gather*} \frac {d \arctanh \left (\frac {\sqrt {d \,x^{3}+c}}{\sqrt {c}}\right )}{24 c^{\frac {5}{2}}}+\frac {\frac {d \arctanh \left (\frac {\sqrt {d \,x^{3}+c}}{\sqrt {c}}\right )}{3 c^{\frac {3}{2}}}-\frac {\sqrt {d \,x^{3}+c}}{3 c \,x^{3}}}{4 c}-\frac {i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {\left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right ) d}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (2 \RootOf \left (d \,\textit {\_Z}^{3}+4 c \right )^{2} d^{2}+i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}+4 c \right ) d -\left (-c \,d^{2}\right )^{\frac {1}{3}} \RootOf \left (d \,\textit {\_Z}^{3}+4 c \right ) d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}-\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}+4 c \right )^{2} d +i \sqrt {3}\, c d -3 c d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \RootOf \left (d \,\textit {\_Z}^{3}+4 c \right )-3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \RootOf \left (d \,\textit {\_Z}^{3}+4 c \right )}{6 c d}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{\left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) d}}\right )}{144 c^{3} d \sqrt {d \,x^{3}+c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^4/(d*x^3+4*c)/(d*x^3+c)^(1/2),x)

[Out]

1/4/c*(-1/3*(d*x^3+c)^(1/2)/c/x^3+1/3*d*arctanh((d*x^3+c)^(1/2)/c^(1/2))/c^(3/2))-1/144*I/d/c^3*2^(1/2)*sum((-
c*d^2)^(1/3)*(1/2*I*(2*x+(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)*((x-(-c*d^2)^(1
/3)/d)/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3))*d)^(1/2)*(-1/2*I*(2*x+(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(
1/3))/d)/(-c*d^2)^(1/3)*d)^(1/2)/(d*x^3+c)^(1/2)*(2*_alpha^2*d^2+I*(-c*d^2)^(1/3)*3^(1/2)*_alpha*d-(-c*d^2)^(1
/3)*_alpha*d-I*3^(1/2)*(-c*d^2)^(2/3)-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2*(-c*d^2)^(1/3)/d-1/2*I*
3^(1/2)*(-c*d^2)^(1/3)/d)*3^(1/2)/(-c*d^2)^(1/3)*d)^(1/2),1/6*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d+I*3^(1/2)
*c*d-3*c*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha-3*(-c*d^2)^(2/3)*_alpha)/c/d,(I*3^(1/2)*(-c*d^2)^(1/3)/(-3/2*(-c*d^
2)^(1/3)/d+1/2*I*3^(1/2)*(-c*d^2)^(1/3)/d)/d)^(1/2)),_alpha=RootOf(_Z^3*d+4*c))+1/24*d*arctanh((d*x^3+c)^(1/2)
/c^(1/2))/c^(5/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{{\left (d x^{3} + 4 \, c\right )} \sqrt {d x^{3} + c} x^{4}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(d*x^3+4*c)/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((d*x^3 + 4*c)*sqrt(d*x^3 + c)*x^4), x)

________________________________________________________________________________________

mupad [B]  time = 5.72, size = 112, normalized size = 1.27 \begin {gather*} \frac {d\,\ln \left (\frac {\left (\sqrt {d\,x^3+c}-\sqrt {c}\right )\,{\left (\sqrt {d\,x^3+c}+\sqrt {c}\right )}^3}{x^6}\right )}{16\,c^{5/2}}-\frac {\sqrt {d\,x^3+c}}{12\,c^2\,x^3}+\frac {\sqrt {3}\,d\,\ln \left (\frac {\sqrt {3}\,d\,x^3-2\,\sqrt {3}\,c+\sqrt {c}\,\sqrt {d\,x^3+c}\,6{}\mathrm {i}}{d\,x^3+4\,c}\right )\,1{}\mathrm {i}}{144\,c^{5/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^4*(c + d*x^3)^(1/2)*(4*c + d*x^3)),x)

[Out]

(d*log((((c + d*x^3)^(1/2) - c^(1/2))*((c + d*x^3)^(1/2) + c^(1/2))^3)/x^6))/(16*c^(5/2)) - (c + d*x^3)^(1/2)/
(12*c^2*x^3) + (3^(1/2)*d*log((c^(1/2)*(c + d*x^3)^(1/2)*6i - 2*3^(1/2)*c + 3^(1/2)*d*x^3)/(4*c + d*x^3))*1i)/
(144*c^(5/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x^{4} \sqrt {c + d x^{3}} \left (4 c + d x^{3}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**4/(d*x**3+4*c)/(d*x**3+c)**(1/2),x)

[Out]

Integral(1/(x**4*sqrt(c + d*x**3)*(4*c + d*x**3)), x)

________________________________________________________________________________________